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In the solid-state, the [RuH(arene)(Binap)]CF3SO3,
complexes, 1, arene � �6-benzene and 2, arene � �6-toluene,
distort markedly from a classical three-legged piano-stool
structure with the former having the P–Ru–P plane
approximately perpendicular to the plane of the arene;
this structure for 1 is what one would expect for a tran-
sition state leading from one diastereomer to another via
inversion at ruthenium.

The atropoisomeric chiral bidentate Binap is an excellent
chiral auxiliary and is often employed in homogeneously
catalysed reactions. It is perhaps best known in connection
with Ru-assisted homogeneous hydrogenation chemistry,1 and
consequently a number of solid-state structures of Ru-Binap
complexes have appeared.2 

Often, the ruthenium precursor used in the catalysis involves
an 18-electron η6-arene complex of Ru(). These arene com-
pounds are known to have classical, but distorted, three-legged
piano-stool structures, e.g. [RuCl(arene)(Binap)]�,3 [RuH-
(η6-benzene or η6-toluene)(PPh3)2]

� 4 or [RuH(η6-benzene)-
(dippe)]� [dippe = bis(diisopropylphosphino)ethane].5 This
structural type has been considered 6 via computational
methods and electronic effects are thought to contribute to the
distortion of the piano-stool. We show here that the Binap
complexes [RuH(η6-arene)(Binap)]CF3SO3, 1 and 2, both dis-
tort markedly from a classical three-legged piano-stool and, for
1, can reach a trigonal structure.

The complexes were prepared by reacting Ru(OAc)2(Binap)
with either benzene or toluene and triflic acid in methanol to
afford 1 and 2 respectively.7 The molecular structures for 1 and
2 were determined via X-ray diffraction methods 8 and ORTEP 9

views of these molecules are given in Fig. 1. Selected bond
distances and bond angles are given in the caption. In both
structures the bond lengths and angles are very similar and fall
in the expected range. The major differences between the two
structures lie in a) the values of the dihedral angle between the
planes defined by atoms P1–Ru–P2 and the C1–C6 ring
[89.7(1)� for 1 and 79.6(1)� for 2, respectively] and b) the
extremely large value of the anisotropic displacement par-
ameters (ADPs) for the Ru atom in 1. The two Ru–P distances
are equal in 1 and slightly different in 2.

In 1 the ruthenium ADPs show a very large amplitude of
displacement in one direction (≈0.2 Å) (see Figs. 1 and 2) com-
pared to compound 2, where a much smaller elongation of the
ADPs is observed (≈0.04 Å). This large displacement may be
the result of the metal atom undergoing a large amplitude
motion or it may be caused by static disorder due to the super-
imposition of two conformations each having the Ru sitting at

each end of the observed displacement. Thus the observed “tri-
gonal” geometry at the metal centre in 1 may be seen as an
average structure consistent with the molecule sitting in a very
shallow single minimum potential. For 1, the P-atoms, the

Fig. 1 (a) Selected bond lengths (Å) and angles (�) for compound 1�
CH2Cl2: Ru–P1 2.290(1), Ru–P2 2.290(2), Ru–C11 2.247(6), Ru–C21
2.268(8), Ru–C31 2.271(7), Ru–C41 2.260(6), Ru–C51 2.275(6), Ru–
C61 2.262(6), P1–C6 1.843(6), P2–C6� 1.843(5); P1–Ru–P2 90.57(5) and
(b) for compound 2: Ru–P1 2.299(1), Ru–P2 2.280(1), Ru–C11 2.272(5),
Ru–C21 2.235(5), Ru–C31 2.245(5), Ru–C41 2.259(5), Ru–C51
2.282(5), Ru–C61 2.268(4), P1–C6 1.838(4), P2–C6� 1.835(4), Ru–H
1.62(7); P1–Ru–P2 90.58(3).
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C-atoms of the Binap core and those of the η6-benzene do not
show the same large amplitude displacements of the Ru atom.
This is consistent with the observation that, in the fluxional
process, the ligands do not move. Thus it may be assumed that
the observed structure of 1 is in fact a static picture of the reac-
tion path leading from one piano-stool conformation to the
opposite through the trigonal transition state [see eqn. (1)].

In both compounds two P bonded phenyl rings are also
disordered but this may not be related to the fluxional process.

The 31P spectra for 1 and 2 in CD2Cl2 reveal dynamic
character. At ambient temperature one finds AB spectra which
collapse to broad singlets at ca. 240 K and ca. 260 K, respect-
ively, and then reappear as two new AB spectra upon lowering
the temperature. The two resonances for 1 are separated by
< 0.7 ppm between 195 K and 298 K. The 1H-hydride resonance
is sharp throughout the entire temperature range and appears
as the X part of an ABX spin system. One finds NOEs from the
hydride signals to the two non-equivalent sets of P-phenyl ortho
protons: one from PA (phenyl axial) and one from PB (phenyl
equatorial) i.e., 

Fig. 2 (a) View of 1 from behind the arene looking towards the metal.
Only the P–Ru–P atoms of the Ru(Binap) fragment are shown. The
approximately perpendicular arrangement of the two planes is clear.
(b) View of 2 from behind the arene looking towards the metal. Only
the P–Ru–P atoms of the Ru(Binap) fragment are shown. The slight
deviation, ca. 10�, is noticable.

(1)

Detailed 1H NMR studies suggest that the observed
dynamics stem from restricted rotation around P–C(phenyl)
bonds and not the inversion of eqn. (1). These NMR results are
consistent with non-equivalent but very similar P-donors. A
solid-state 31P NMR spectrum was obtained but, due to the
substantial line width, was not informative.

The chemistry of eqn. (1) can (but need not be) facile and
there is substantial discussion by Brunner and co-workers,10

amongst others,11 on this subject. Our result for 1 presents the
first example of a structure confirming that the barrier need not
be very high.
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